gap> G :=SpaceGroupBBNWZ(“Fd-3m”);

SpaceGroupOnRightBBNWZ( 3, 7, 5, 2, 4 )

gap> GroupCohomology(G,2);

[ 2, 2 ]

gap> GroupCohomology(G,2,2);

[ 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,3);

[ 2, 2, 2 ]

gap> GroupCohomology(G,3,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,4);

[ 2, 2, 2, 2, 2, 12 ]

gap> GroupCohomology(G,4,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,5);

[ 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,5,2);

[ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 ]

gap> G :=SpaceGroupBBNWZ(“Fd-3c”);

SpaceGroupOnRightBBNWZ( 3, 7, 5, 2, 3 )

gap> GroupCohomology(G,2);

[ 2, 2 ]

gap> GroupCohomology(G,2,2);

[ 2, 2, 2, 2 ]

gap> GroupCohomology(G,3);

[ 2, 2 ]

gap> GroupCohomology(G,3,2);

[ 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,4);

[ 2, 2, 12 ]

gap> GroupCohomology(G,4,2);

[ 2, 2, 2, 2 ]

gap> G := SpaceGroupBBNWZ(“R-3m”);

SpaceGroupOnRightBBNWZ( 3, 5, 5, 1, 1 )

gap> GroupCohomology(G,2,2);

[ 2, 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,2);

[ 2, 2, 2 ]

gap> G := SpaceGroupBBNWZ(“P4132”);

SpaceGroupOnRightBBNWZ( 3, 7, 3, 1, 2 )

gap> GroupCohomology(G,2,2);

[ 2 ]

gap> GroupCohomology(G,2);

[ 2 ]

gap> G := SpaceGroupBBNWZ(“P4332”);

SpaceGroupOnRightBBNWZ( 3, 7, 3, 1, 2 )

gap> GroupCohomology(G,2,2);

[ 2 ]

gap> GroupCohomology(G,2);

[ 2 ]

gap> G := SpaceGroupBBNWZ(“Fm-3m”);

SpaceGroupOnRightBBNWZ( 3, 7, 5, 2, 1 )

gap> GroupCohomology(G,2,2);

[ 2, 2, 2, 2, 2, 2 ]

gap> GroupCohomology(G,2);

[ 2, 2 ]

gap> G := SpaceGroupBBNWZ(“F-43m”);

SpaceGroupOnRightBBNWZ( 3, 7, 4, 2, 1 )

gap> GroupCohomology(G,2,2);

[ 2, 2, 2, 2 ]

gap> GroupCohomology(G,2);

[ 2 ]